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Microwave interactions with low energy electrons 
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The University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK 
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Abstract. The equations of motion for a low energy electron interacting with a microwave 
electric field at the electron cyclotron frequency in a homogeneous magnetic field are solved 
numerically to determine the electron energy as a function of time and microwave electric 
field strength. 

The shape of the microwave power absorption signal is calculated for two ideal cases 
and for more practical cases in which both the interaction time and the mean time between 
collisions must be considered. 

1. Introduction 

The solution of the equations of motion of an electron gyrating in a magnetic field in 
the presence of a microwave field has proved difficult except for special cases. The 
problem is simplified if low energy electrons are considered. Consoli and Mourier 
(1963) have calculated the maximum energy attained by electrons, initially at rest, which 
encounter a microwave field at the electron cyclotron resonance frequency, although 
they do not determine the electron energy as a function of time. According to Hakken- 
burg and Weenink (1964) higher energies are attained if the microwave frequency is less 
than the electron cyclotron frequency. The energy gain of charged particles interacting 
with two high frequency waves beating at the gyroresonance frequency has been investi- 
gated by Crescentini et a1 (1971). The first part of this present paper shows some results 
obtained by computer solution of the equations of motion for low energy electrons. 

The power absorbed by relativistic electrons undergoing cyclotron resonance has 
been discussed by several authors in connection with electron cyclotron masers (Hirsh- 
field et a1 1965, Hsu and Robson 1965). Franken and Liebes (1959) and Klein (1968) 
discuss the power absorbed by low energy electrons in connection with precision 
measurements of the cyclotron frequency of free electrons. These authors neglect the 
effect of collisions on the lineshape which is discussed in the final part of the present 
paper. 

2. Electron-microwave interaction 

The equation of motion of an electron (charge - e ,  rest mass m,) moving in a magnetic 
field B (assumed to be in the z direction of a rectangular Cartesian coordinate system 

t Now at the Department of Physics, Birkbeck College, University of London. 
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and under the action of a microwave electric field b (assumed to  be in the x-y plane) is 

p =  - e  b + - x B  i n L  1 
where p is the electron momentum and y = { 1 + ( p 2 / m i c 2 ) ) ' i 2 ,  Although initially low 
electron energies are to  be considered, equation (1) is written in a relativistic form since 
the interaction accelerates electrons to energies for which the relativistic effect becomes 
important. If complex notation is used for 8 andp,  that is, 

8 = S,+jb, 

P = p x + j p y  

equation (1) becomes 

p =  - e l + j o , p  (2) 

where w, (= eB/m) is the electron cyclotron frequency. I f  w is the angular frequency of 
the microwave field then d is of the form 

8 = 8, e'"'+&- e-jwt, (3) 

that is, there will be anticlockwise (positive) and clockwise (negative) rotating com- 
ponents. For a circular polarization either b+ or b- = 0, whilst for transverse polariza- 
tion 8+ = h. 

In order to obtain analytical solutions giving the magnitude of the momentum ( p )  
(and hence the energy of the electrons) it is convenient to writep = p ej4 where $ is the 
angle betweenp and some fixed direction in the x-y plane. After some algebraic manipu- 
lation of the previous equations we obtain 

(4) 

where x = 4 -or and is the phase angle between the momentum vector and the electric 
field. 

Equation (4) shows that at near-resonance, that is when Io--w,I << U,, the average 
change of momentum is given by the first term; the presence of a counter-circulating 
electric field has no influence on physically interesting results considered over times 
large compared with a cyclotron period. 

p = -e€+ cos x -e&- cos(x + 2wt), 

Further manipulation of the equations gives 1:  
e&+ sinx ed- . 

P P 
+ - sin(x + 2wt) - w. 1 = U,+ 

Thus, if we consider near-resonant conditions, the temporal behavi0u.r of p and x is 
described by 

p = -e€+ cosx (6)  

e&+ 2 = w,-w+---sinX. 
P 

(7) 

Equations (6)  and (7) were solved numerically and p and x were obtained as functions of 
time for chosen values of the variable parameters 8, , B, etc for resonant conditions. The 
microwave frequency was chosen to be 9.3 GHz. 
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I t  is well known that an electron initially in synchronism with the microwave field, 
falls out of synchronism whilst undergoing cyclotron acceleration due to the relativistic 
mass and that this limits the energy attainable in such a process. 

Under the conditions which normally prevail in the cyclotron resonance of free 
electrons it is assumed that an electron moves in a circular orbit of radius r = p/Be. 
This assumption is valid if any changes occurring in p do so at a rate very much lower 
than the cyclotron frequency. Alternatively, if the relative magnitudes of the forces 
acting upon the electron are considered, it is seen that the Lorentz force is greater than, 
equal to, or less than the electric force according to whether U 2 &/B. Thus only in those 
cases for which U >> & / B  will the electron move in a circular orbit and any deviation 
from such an orbit will increase as v decreases. 

If a low energy electron encounters the microwave electric field at such a phase that 
deceleration takes place, a sudden change in phase angle ensues due to the deviation from 
a circular orbit. Figure 1 shows the variation in phase angle and energy for an electron, 

2 3 x io4 (rev) 
3 (SI 

0 I '  Time 0 
I I 

Time ( rev )  

Figure 1. Variation in phase angle and energy for an electron, initial energy 1 eV, injected 
with a phase angle n. Microwave electric field = 10' V m- '. 

initial energy 1 eV, injected with a phase angle n with respect to a microwave electric 
field of lo2 V m-'. Figure 2 shows the phase angle as a function of time for three values 
of the ratio Lorentz force/electric force. I t  can be seen that when the electric force is 
appreciably greater than the Lorentz force the phase change takes place in a time 
comparable with the cyclotron period. 

I t  is interesting to note that the period of energy oscillations for low energy electrons 
is very similar to the period of pendulum oscillations of small amplitude around a phase 
stable orbit for higher energy electrons originated by Bohm and Foldy (1946). E E 
Schneider (1972, private communication) has suggested that, by using the equations of 
motion in a dimensionless form, a relationship between the pendulum period and the 
period of low energy oscillations may be derived. 



Microwave interactions with low energy electrons 977 

Cf 
0.1 

I 

2 x103 
1 1 1 I 

0 I 2 3 4 
Time ( r e v )  

Figure 2. Phase angle as a function of time for different magnitudes of electric and magnetic 
forces. a is the ratio of the magnetic to the electric force. 

3. Power absorption by low energy electrons during cyclotron resonance 

In contrast to the last section, the calculations presented here deal with cases in which the 
microwave electric field strength is low enough to  prevent substantial acceleration and 
consequent broadening of the absorption line. Using the same notation as in the previous 
section, the equation of motion of an electron interacting with a rotating electric field 
8 exp{ j(ot + 4) }  is : 

dv U e l  -+- = - expj j(ot + $)} + jwcu 
dt z m 

which has the solution : 

exp( jot) - expj joc - (l/z)}t 
1 - j(o - oc)z  3 (9) 

where z, the mean time between collisions, is assumed to be independent of U. Further- 
more it is assumed that the electron velocity is completely random immediately after 
each collision. The electron will absorb energy AE, in a time T where 

E:, E ,  are the kinetic energies at times 0 and T and the final term represents the work 
done against the frictional force. Using equations (9) and (10) gives 

exp( - a ) a ( x  sin X - a cos X )  + a2 
AE T2e2d2 ( I -exp(-a)cosX+a- a2 + X2 

- 
- m(a2 + x’) 

with X = ( u - o J T  and a = T/z. In obtaining this expression the assumption that 
there is no correlation between 4 and the time at which an electron enters the microwave 
field has been made. If a >> 1, equation (1 1) reduces to a lorentzian form, similar to  that 
considered by Schneider (1960). On the other hand, if a + 0, equation (1 1) reduces to the 
sin’($X)/($X)’ form quoted by Hsu and Robson (1965) and Franken and Liebes (1959). 
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The amplitude of the lineshape obtained in the absence of collisions in general decreases 
more rapidly in the wings than for the lorentzian line. Furthermore, secondary peaks 
occur in the former case. The full widths at half height for the resonance lineshapes 
obtained under these limiting conditions are : 

2 
(i) lorentzian Am = r 

1 

sin2gw - w,)T 2.78 
Aw = -. 

T (ii) 
{ + W - - c ) T ) 2  

In addition to  investigating the lineshapes for these two cases, intermediate cases may be 
considered if a new time parameter Teff defined as 

2.78 1 
K f f  = (7+;) 

is introduced and the X of equation (1 1) is replaced by 

Teff y = x--. 
T 

The mean power absorbed is then 

where b = (2.78 +a)  ; F(a) is a normalizing factor given by 

a+ exp(-a)-1 
U 2  

F (u )  = 

and Sty ,  a )  is a 'shape function' which does not depend on the absolute value of the mean 
time between collisions and transit time, but merely on the ratio of these quantities : 

1 
S(Y, a)  = -(a2 + b 2 y 2 ) -  ' [ 2  sin2()by) + { 1 - exp( - a)} cos(by) + a 

F(a) 
+2a2(a2 + b 2 y 2 ) -  '[e-"{cos(by)-iby sin(by)) - 111. (16) 

S(y ,  a)  was computed as a function of y for several values of a and is shown in figure 3. It 
is seen that when the transit time is equal to or smaller than the mean time between 
collisions, secondary peaks occur in the wings of the resonance lines. Similar secondary 
peaks have been observed in the cyclotron resonance signals associated with 10 keV 
electrons (details to be published). It should be noted, however, that due to the relativistic 
increase in the electron mass with increasing energy, the profiles for medium energy 
electrons show regions of negative power absorption. 

4. Conclusion 

The equations of motion for a low energy electron undergoing cyclotron resonance were 
solved numerically enabling the variations in electron energy to be determined. The 
computer solutions of the equations of motion may prove useful in attempts to  explain 
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Figure 3. The shape function S ( y ,  a) as a function of 

for several values of a( = T'T) .  

results from experimental investigations into electron temperatures in plasmas produced 
in electron cyclotron resonance heating guns (Masuda et a1 1972). 

The cyclotron resonance lineshapes in the absence of large microwave fields were 
calculated and the existence of secondary peaks similar to those observed in later 
experiments (to be published) was demonstrated. 
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